Bluetooth V2.0 Class 2

module

Product datasheet

General Description

AUBTM-23 is Bluetooth Core V2.0 compliant module. The module is designed to be embedded in a host system which requires cable replacement function. Typically the module could interface with a host through the UART port.

The module could be used in many different application, e.g.:

- High Quality Stereo Wireless Headsets
- High Quality Mono Headsets
- Hands-Free Car Kits
- Wireless Speakers
- VOIP Handsets
- Analogue and USB Multimedia
 Dongles
- Bluetooth-Enabled Automotive Wireless Gateways

Key Specification

- Fully Qualified Bluetooth v2.0+EDR system
- Handsfree/Headset profile, A2DP, AVRCP, OPP support
- Enhanced Audibility and noise cancellation (with additional DSP software)
- Support UART, USB, PCM, I2C interface to host system
- Integrated battery charger
- Support for 802.11 Co-existence
- RoHS Compliant

Copyright © 2009-2010 Austar Technology

All rights reserved.

Austar Technology assumes no responsibility for any errors, which may appear in this manual. Furthermore, Austar Technology reserves the right to alter the hardware, software, and/or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. Austar Technologys' products are not authorized for use as critical components in life support devices or systems.

The Bluetooth trademark is owned by the Bluetooth SIG Inc., USA, and is licensed to Austar Technology.

All other trademarks listed herein are owned by their respective owners.

Table of Contents

1	Struct	ure4
2	PCB 1	ayout specification
3	Packa	ge Information:
	3.1	Pinout Diagram6
	3.2	Terminal Functions6
4	Devic	e Terminal Description
	4.1	Audio Input/output8
	4.2	UART
	4.3	PIO9
	4.4	AIO9
	4.5	USB9
	4.6	Power control
	4.7	Battery Charger
5	Electr	ical specification:
	5.1	Radio Characteristics
	5.2	Power Control
	5.3	Digital Terminal Input voltage11
	5.4	Digital Terminal Output voltage11
	5.5	Input and Tri-state Current with:
	5.6	USB Terminals Characteristics
	5.7	Auxiliary ADC
	5.8	Audio Input, Microphone Amplifier12
	5.9	Audio Output, Speaker Output13
6	Manu	al Soldering15
	6.1	Reflow soldering15
7	DC	17

1 Structure

2 PCB layout specification

Product datasheet © Austar Technology 2009 Figures above illustrates how PCB design around the antenna of AUBTM-23 should be made. The most important thing is that there is no copper (ground plane or traces) underneath or in the close proximity of the antenna.

It's also very important to have grounding vias all the way in the border between ground plane and free space, as illustrated with black and gray dots in figures above. This prevents the RF signal for reflecting back to the PCB and signal lines over there.

Try to avoid any metal material near the antenna and keep at least 5mm away if it is inevitable. A solid ground should be provide for AUBTM-23 and the copper area should be at least 20x15mm to maintain the best RF performance.

3 Package Information:

3.1 Pinout Diagram

3.2 Terminal Functions

Pin	Pin name	I/O	
Number			
1.	GND1		Ground
2.	RST		Reset
3.	AIO1		Analog input/output channel 1
4.	AIO0		Analog input/output channel 0
5.	USB_DN		USB data negative
6.	USB_DP		USB data positive
7.	UART_RTS		UART RTS
8.	UART_CTS		UART CTS
9.	UART_RX		UART RX
10.	UART_TX		UART TX

Product datasheet © Austar Technology 2009

11.	PIO10	Digital input/output port 10
12.	PIO9	Digital input/output port 9
13.	PIO11	Digital input/output port 11
14.	PIO15	Digital input/output port 15
15.	PIO7	Digital input/output port 7
16.	PIO13	Digital input/output port 13
17.	PIO12	Digital input/output port 12
18.	PIO4	Digital input/output port 4
19.	PIO5	Digital input/output port 5
20.	PIO6	Digital input/output port 6
21.	PIO14	Digital input/output port 14
22.	PIO8	Digital input/output port 8
23.	PCM_OUT	Synchronous 8 kbps data out (internal Pull down)
24.	PCM_IN	Synchronous 8 kbps data in (internal Pull down)
25.	PCM_SYNC	Synchronous data strobe (internal pull-down)
26.	PCM_CLK	Synchronous data clock (internal pull-down)
27.	PIO2	Digital input/output port
28.	PIO3	Digital input/output port
29.	PIO1	Digital input/output port
30.	PIO0	Digital input/output port
31.	GND2	Ground
32.	SPI_MOSI	SPI data input (pull down)
33.	SPI_CS	Chip selection for SPI (internal pull up, active low)
34.	SPI_CLK	SPI Clock (internal pull down)
35.	SPI_MISO	SPI data output (pull down)
36.	POWER_ON	Power enable
37.	VBAT	Battery in
38.	VCHG	Charging Voltage
39.	MIC_BIAS	Microphone bias
40.	MIC_B_P	Microphone B positive
41.	MIC_B_N	Microphone B negative
42.	MIC_A_P	Microphone A positive
43.	MIC_A_N	Microphone A negative
44.	SPKR_B_P	Speaker B positive
45.	SPKR_B_N	Speaker B negative
46.	SPKR_A_P	Speaker A positive
47.	SPKR_A_N	Speaker A negative

4 Device Terminal Description

4.1 Audio Input/output

AUBTM-23 audio input receives its analogue input signal from pins AUDIO_IN_P_LEFT and AUDIO_IN_N_LEFT. The input can be configured to be either single ended or fully differential. It can be programmed for either microphone or line input and has a 3-bit digital gain setting of the input-amplifier in 3dB steps to optimize it for the use of different microphones.

AUBTM-23 has a class-AB amplifier as the audio output-stage and is capable of driving a signal on both channels of up to 2V pk-pk- differential into a load of 32Ω and 500pF with a typical THD+N of -74dBc. The output is available as a differential signal between AUDIO_OUT_N_LEFT and AUDIO_OUT_P_LEFT for the left channel ; and between AUDIO_OUT_N_RIGHT and AUDIO_OUT_P_RIGHT for the right channel. The output is capable of driving a speaker directly if its impedance is at least 16Ω if only one channel is connected or an external regulator is used.

4.2 **UART**

AUBTM-23 Universal Asynchronous Receiver Transmitter (UART) interface provide s a simple mechanism for communicating with other serial devices.

Four signals are used to implement the UART function. When AUBTM-23 is connected to another digital device, RXD and TXD transfer data between the two devices. The remaining two signals, NCTS and NRTS, can be used to implement RS232 hardware flow control where both are active low indicators. All UART connections are implemented using CMOS technology and have signalling levels of 0V and VDD.

Parameter		Possible Values
Baud Rate		1200 Baud (≤2%Error)
	Minimum	
		9600 Baud (≤1%Error)
	Maximum	1.5MBaud (≤1%Error)
Flow Control		RTS/CTS or None
Parity		None, Odd or Even
Number of Stop Bits		1 or 2
Bits per channel		8

Possible UART Settings (1)

(1) UART settings are set during factory calibration. Customer should provide desired

Product datasheet © Austar Technology 2009 configuration before purchasing.

4.3 PIO

AUBTM-23 provides 16 lines of programmable bi-directional input/outputs (I/O) are provided. PIO lines can be configured through software to have either weak or strong pull-ups or pull-downs. All PIO lines are configured as inputs with weak pull-downs at reset.

4.4 AIO

AUBTM-23 has 2 general purpose analogue interface pins, AIO[0], AIO[1]. AIO pins are mainly used as inputs of internal A/D converters. Typical use of these pins are monitoring the battery level.

4.5 USB

AUBTM-23 contains a full speed (12Mbits/s) USB interface that is capable of driving a USB cable directly. No external USB transceiver is required. The device operates as a USB peripheral, responding to requests from a master host controller such as a PC. Both the OHCI and the UHCI standards are supported. The set of USB endpoints implemented can behave as specified in the USB section of the Bluetooth specification v1.2 or alternatively can appear as a set of endpointd appropriate to USB audio devices such as speakers.

As USB is a Master/Slave oriented system (in common with other USB peripherals), AUBTM-23 only supports USB Slave operation.

4.6 Power control

AUBTM-23 contains built-in DC/DC regulator to provide power supply for the module. A battery or an external DC power supply could be connected with VBAT to power the module. Pin Power_on is used to enable the module, allowing the device to boot up. When Power_on is high, the internal power supply is enabled. The firmware is then about to latch the internal regulator and the Power_on pin could be released. Power_on has a logic threshold of around 1V, and have weak pull-downs. It can tolerate voltages up to 4.9V, so it may be connected directly to a battery to enable the device.

4.7 Battery Charger

The battery charger is a constant current / constant voltage charger circuit, and is suitable for lithium ion/polymer batteries only. It shares a connection to the battery terminal, VBAT, with the switch mode regulator; however it may be used in conjunction with either of the high voltage regulators on the device. The constant current level can be varied to allow charging of different capacity batteries. The charger circuit requires configuration and calibration settings which are stored in the device. To ensure these are set, the circuit enables the active regulators whenever it enters 'fast-charge' mode so that the device will boot-up and run the charger configuration firmware.

Firmware can detect, using an internal status bit, when the charger is powered. When the charger supply is not connected to VCHG, the terminal must be left open circuit.

5 Electrical specification:

5.1 Radio Characteristics

Parameter	Min	Тур	Max	Unit
Output Power	-	4	-	dBm
Power control range	14			dB
Power control step	2		8	dB
Operation Current		70	110	mA
Sensitivity		-80	-82	dBm

5.2 Power Control

Parameter	Min	Тур	Max	Unit
Supply Voltage(VBAT)	2.7	-	4.5	V
Battery Charger Input Voltage	4.5		6.5	V

5.3 Digital Terminal Input voltage

Parameter	Min	Тур	Max	Unit
VIL input logic level low	-0.4		+0.8	V
VIH input logic level high	2.0625		3.6	V

5.4 Digital Terminal Output voltage

Parameter	Min	Тур	Max	Unit
VOL output logic level low			0.125	V
VOL output logic level high	2.475		3.3V	V

5.5 Input and Tri-state Current with:

Parameter	Min	Тур	Max	Unit
Strong pull-up	-100	-40	-10	μ Α
Strong pull-down	+10	+40	+100	μ Α

Product datasheet © Austar Technology 2009 Page 11 of 18

Weak pull-up	-5.0	-1.0	-0.2	μ Α
Weak pull-down	+0.2	+1.0	+5.0	μ Α
I/O pad leakage current	-1	0	+1	μ Α
CI Input Capacitance	1.0	-	5.0	pF

5.6 USB Terminals Characteristics

Parameter	Min	Тур	Мах	Unit
VDD_USB for correct USB operation	3.1		3.6	V
Input threshold				
VIL input logic level low	-	-	0.99	V
VIH input logic level high	2.31	-	-	V
Input leakage current				
VSS < VIN < VDD	-1	1	5	μ Α
CI Input capacitance	2.5	-	10.0	pF
Output Voltage levels to correctly				
terminated USB Cable				
VOL output logic level low	0.0	-	0.2	V
VOH output logic level high	2.8	-	3.3	V

5.7 Auxiliary ADC

Parameter	Min	Тур	Max	Unit	
Resolution		-	-	8	Bits
Input voltage range (LSB size = 3.3/255)		0	-	3.3	V
Accuracy(Guaranteed	INL	-1	-	1	LSB
monotonic)	DNL	0	-	1	LSB
Offset		-1	-	1	LSB
Gain Error		-0.8	-	0.8	%
Input Bandwidth	-	100	-	kHz	
Conversion time	-	2.5	-	μs	
Sample rate(2)		-	-	700	Samples/s

5.8 Audio Input, Microphone Amplifier

Parameter	Min	Тур	Max	Unit
Input full scale at maximum gain	-	4	-	mV rms
Input full scale at minimum gain	-	400	-	mV rms

Product datasheet © Austar Technology 2009 Page 12 of 18

Gain resolution	-	3	-	dB
Distortion at 1kHz	-		-74	dB
Input referenced rms noise	-	8	-	μ V rms
3dB Bandwidth	-	17	-	kHz
Input impedance	-	20	-	kΩ
THD+N (microphone input) @ 30mV rms	-	-66	-	dB
THD+N (line input) @ 300mV Ω input(9)	-	-74	-	dB

5.9 Audio Output, Speaker Output

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Allowed		Resistive		-	O.C.	Ω
Load		Capacitive	-	-	500	pF
Max		RL=600Ω	-	2.0	-	V pk-pk
output						
voltage						
Max		RL=22Ω	-	75	-	mA
output						
current						
Total						
Harmonic		fIN=1kHz, BW=22Hz to		0.015	-	%
Distortion	THE TR	22kHz RL=600Ω	_			
plus Noise						
Output		A Weighted Po=digital				
noise	SNR	silence RI = 6000	_	-91	_	dB
relative to	Cruc	BW=22Hz to 22kHz		01		ũ.Đ
full scale						
Channel		fIN=10kHz, analogue				
Separation	CS	output set to maximum	-	-	-60	dB
(Crosstalk)		gain				
Power	PSRR	Vripple=200mVpk-pk	-	TBD	-	dB
Supply		sinewave, 10kHz at				
Rejection		VREG_IN. 2.3V ≤				
Ratio		VREG_IN ≤ 4.1V,				
		analogue output set to				
		maximum gain				
Second		1kHz sinewave, 1dB				
Harmonic		below full scale 600Ω	-	<-95	-	dB
Level						

Third Harmonic Level		1kHz sinewave, 1dB below full scale 600Ω	-	-95	-	dB
----------------------------	--	---	---	-----	---	----

SOLDERING

6 Manual Soldering

TBA

6.1 Reflow soldering

The soldering profile depends on various parameters necessitating a set up for each application. The data here is given only for guidance on solder re-flow. There are four zones:

- 1. Preheat Zone This zone raises the temperature at a controlled rate, typically 1-2.5°C/s.
- 2. Equilibrium Zone This zone brings the board to a uniform temperature and also activates the flux. The duration in this zone (typically 2-3 minutes) will need to be adjusted to optimize the out gassing of the flux.
- 3. Reflow Zone The peak temperature should be high enough to achieve good wetting but not so high as to cause component discoloration or damage. Excessive soldering time can lead to intermetallic growth which can result in a brittle joint.
- 4. Cooling Zone The cooling rate should be fast, to keep the solder grains small which will give a longer lasting joint. Typical rates will be 2-5°C/s.
- 5. Solder Re-Flow Profile for Devices with Lead-Free Solder Balls

Composition of the solder ball: Sn 95.5%, Ag 4.0%, Cu 0.5%

Figure 34: Reflow solder profile

Key features of the profile:

- Initial Ramp = 1-2.5°C/sec to 175°C ± 25 °C equilibrium
- Equilibrium time = 60 to 180 seconds
- Ramp to Maximum temperature (250°C) = 3°C/sec max.
- Time above liquidus temperature (217°C): 45-90 seconds
- Device absolute maximum reflow temperature: 260°C

Devices will withstand the specified profile. Lead-free devices will withstand up to three reflows to a maximum temperature of 260°C.

7 Referenced schematic design

Revision History				
DATE	VERSION	DESCRIPTION		
Jul 04, 2009	а	Preliminary publication		